| Code: 166319 |

NHYTE composite promises lighter and stronger aircraft

Bath University is spearheading a project to develop a new type of thermoplastic composite for the aerospace industry that is lighter, stronger and cheaper than current materials.

TINNews |

Bath University is spearheading a project to develop a new type of thermoplastic composite for the aerospace industry that is lighter, stronger and cheaper than current materials.

The snappily titled New Hybrid Thermoplastic Composite Aerostructures manufactured by Out of Autoclave Continuous Automated Technologies (NHYTE) project is being funded with €5.2m of Horizon 2020 money. Its aim is to produce a high-performance material based on a commercial PEEK (poly ether ether ketone)-Carbon Fibre Prepreg with the addition of amorphous polyetherimide (PEI) films.

So far, these types of materials have been limited to the laboratory. However, the NHYTE consortium – which includes several academic and industrial partners from across the EU – is aiming to identify and implement a suitable manufacturing process which can be up-scaled to an industrial level. Parts will be produced by a robotic machine using new processes such as Automated Fibre Placement (AFP) and continuous forming, and will be assembled by induction welding using similar methods as the automotive industry.

“This innovative material, conceived and patented by a partner of the consortium, is an example of multifunctional composite, since it returns both functions of toughness improvement and process simplification,” said Michele Meo, a professor at Bath’s Department of Mechanical Engineering.

“This concept on one side will provide an advantage in terms of better impact damage performance. On the other side, major advantages will result on processing simplification, in particular including improved cycle times and lower energy consumption. The technological advances of NHYTE will also reflect in higher inspection quality of aerospace composite components and therefore an increase of safety.”

According to the Bath researchers, the material will not only be structurally superior to current aerospace composites, it will also be easier to process, leading to shortened manufacturing times and energy inputs. Being lighter than existing materials, airlines themselves should also benefit from lower fuel costs, and the overall carbon emissions associated with aircraft could be reduced.

Source: theengineer

 

 

Related News

Send Comment

Multimedia